Disease onset in X-linked dystonia-parkinsonism correlates with expansion of a hexameric repeat within an SVA retrotransposon in TAF1
نویسندگان
چکیده
X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disease associated with an antisense insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within an intron of TAF1 This unique insertion coincides with six additional noncoding sequence changes in TAF1, the gene that encodes TATA-binding protein-associated factor-1, which appear to be inherited together as an identical haplotype in all reported cases. Here we examined the sequence of this SVA in XDP patients (n = 140) and detected polymorphic variation in the length of a hexanucleotide repeat domain, (CCCTCT)n The number of repeats in these cases ranged from 35 to 52 and showed a highly significant inverse correlation with age at disease onset. Because other SVAs exhibit intrinsic promoter activity that depends in part on the hexameric domain, we assayed the transcriptional regulatory effects of varying hexameric lengths found in the unique XDP SVA retrotransposon using luciferase reporter constructs. When inserted sense or antisense to the luciferase reading frame, the XDP variants repressed or enhanced transcription, respectively, to an extent that appeared to vary with length of the hexamer. Further in silico analysis of this SVA sequence revealed multiple motifs predicted to form G-quadruplexes, with the greatest potential detected for the hexameric repeat domain. These data directly link sequence variation within the XDP-specific SVA sequence to phenotypic variability in clinical disease manifestation and provide insight into potential mechanisms by which this intronic retroelement may induce transcriptional interference in TAF1 expression.
منابع مشابه
Genetic study of an American family with DYT3 dystonia (lubag).
X-linked dystonia-parkinsonism (XDP, DYT3), endemic in the Philippine island of Panay, is characterized by the clinical onset with dystonia followed by parkinsonism. We found a 35-year-old American male patient, originally from Panay with typical XDP, has a 2-year history of parkinsonism, dystonia, and tremor. Ancestral DYT3 haplotype and disease-specific SVA (short interspersed nuclear element...
متن کاملX-Linked Dystonia Parkinsonism: Clinical Phenotype, Genetics and Therapeutics
The clinical phenotype of X-Linked Dystonia Parkinsonism (XDP) is typically one that involves a Filipino adult male whose ancestry is mostly traced in the Philippine island of Panay. Dystonia usually starts focally in the lower limbs or oromandibular regions, then spreads to become generalized eventually. Parkinsonism sets in later into the disease and usually in combination with dystonia. /DYT...
متن کاملClinicopathological Phenotype and Genetics of X-Linked Dystonia–Parkinsonism (XDP; DYT3; Lubag)
X-linked dystonia-parkinsonism (XDP; OMIM314250), also referred to as DYT3 dystonia or "Lubag" disease, was first described as an endemic disease in the Philippine island of Panay. XDP is an adult-onset movement disorder characterized by progressive and severe dystonia followed by overt parkinsonism in the later years of life. Among the primary monogenic dystonias, XDP has been identified as a ...
متن کاملMolecular dissection and anatomical basis of dystonia: X-linked recessive dystonia-parkinsonism (DYT3).
Pathological findings in dystonia have been unclear. X-linked recessive dystonia-parkinsonism (XDP, DYT3), endemic in the Panay island, the Philippines, is characterized by the clinical onset with dystonia followed by parkinsonism. It provides a unique opportunity to explore the anatomical basis of dystonia, because it has discernible pathological changes even at its early phase of dystonia. Af...
متن کاملX-linked dystonia parkinsonism syndrome (XDP, lubag): disease-specific sequence change DSC3 in TAF1/DYT3 affects genes in vesicular transport and dopamine metabolism.
X-chromosomal dystonia parkinsonism syndrome (XDP, 'lubag') is associated with sequence changes within the TAF1/DYT3 multiple transcript system. Although most sequence changes are intronic, one, disease-specific single-nucleotide change 3 (DSC3), is located within an exon (d4). Transcribed exon d4 occurs as part of multiple splice variants. These variants include exons d3 and d4 spliced to exon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 114 شماره
صفحات -
تاریخ انتشار 2017